Periodontal Ligament Stem Cells in the Periodontitis Microenvironment Are Sensitive to Static Mechanical Strain
نویسندگان
چکیده
During orthodontic treatment, periodontium remodeling of periodontitis patients under mechanical force was abnormal. We have previously confirmed the function impairment of periodontal ligament stem cells (PDLSCs) in the periodontitis microenvironment which might be involved in this pathological process. However, the response of PDLSCs in periodontitis microenvironment to mechanical force remains unclear. Therefore, in the present study, we introduced a Flexcell tension apparatus and investigated the response of PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and of those obtained from healthy periodontal tissues (HPDLSCs) to different magnitudes of static mechanical strain (SMS). PPDLSCs showed increased proliferation, decreased osteogenic activity, activated osteoclastogenesis, and greater secretion of inflammatory cytokines. Different magnitudes of SMS exerted distinct effects on HPDLSCs and PPDLSCs. An SMS of 12% induced optimal effects in HPDLSCs, including the highest proliferation, the best osteogenic ability, the lowest osteoclastogenesis, and the lowest secretion of inflammatory cytokines, while the optimal SMS for PPDLSCs was 8%. Excessive SMS damaged PPDLSCs function, including decreased proliferation, an imbalance between osteogenesis and osteoclastogenesis, and an activated inflammatory response. Our data suggest that PPDLSCs are more sensitive and less tolerant to SMS, and this may explain why mechanical force results in undesirable effects in periodontitis patients.
منابع مشابه
Dental Follicle Cells Rescue the Regenerative Capacity of Periodontal Ligament Stem Cells in an Inflammatory Microenvironment
AIMS Periodontal ligament stem cells (PDLSCs) are one of the best candidates for periodontal regeneration. Their function could be impaired in periodontitis microenvironment. Dental follicle cells (DFCs), serving as precursor cells and mesenchymal stem cells, have intimate connection with PDLSCs. However, it is still unknown whether DFCs could provide a favorable microenvironment to improve the...
متن کاملUp-regulated osteogenic transcription factors during early response of human periodontal ligament stem cells to cyclic tensile strain
INTRODUCTION As one group of periodontal ligament (PDL) cells, human periodontal ligament stem cells (hPDLSCs) have been isolated and identified as mesenchymal adult stem cells (MSCs) since 2004. It has been well accepted that PDL sensitively mediates the transmission of stress stimuli to the alveolar bone for periodontal tissue remolding. Besides, the direction of MSCs differentiation has been...
متن کاملGCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment
Periodontal ligament stem cells (PDLSCs) from periodontitis patients showed defective osteogenic differentiation. However, the mechanism of impaired osteogenic differentiation of PDLSCs in inflammatory microenvironments is still unclear. In this study, we found that inflammation in the microenvironment resulted in downregulation of histone acetyltransferase GCN5 expression and lack of GCN5 caus...
متن کاملET-1 Promotes Differentiation of Periodontal Ligament Stem Cells into Osteoblasts through ETR, MAPK, and Wnt/β-Catenin Signaling Pathways under Inflammatory Microenvironment
Periodontitis is a kind of chronic inflammatory disease that affects the tooth-supporting tissues. ET-1 is related to periodontitis and involved in the regulation of cytokines, but the mechanisms remain unclear. The aim of this study is to investigate how ET-1 affects proinflammatory cytokine expression and differentiation in human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated ...
متن کاملCanine Periodontal Stem Cells: Isolation, Differentiation Potential and Electronic Microscopic Characterization
Objective- Investigating of the isolation, culture, differentiation potential and electronic microscopic characterization of canine periodontal ligament stem cells (PDLSCs). Design- Experimental in vitro study Animals- Four intact, male, mongrel dogs, 8-10 months-old were selected to collect PDLSCs from their teeth. Procedures- The dogs were anesthetized and the first maxillary and mandibula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017